Abstract

Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

Highlights

  • The 0.1–0.3 range, significantly lower than their rigid bulk counterparts fabricated using conventional approaches such as hot press or spark plasma sintering[2]

  • The peak ZT of our flexible films reaches 0.43 at 175 °C due to a combination of high power factor and low thermal conductivity, which is among the highest ZT reported for flexible thermoelectric materials fabricated by printing

  • The reaction between molecularly ligated chalcogen and pnictogen complexes was activated by microwave stimulation with the presence of thioglycolic acid (TGA), which serves as a shape-directing, oxide-inhibiting and sulfur-dopant delivery agent

Read more

Summary

Introduction

The 0.1–0.3 range, significantly lower than their rigid bulk counterparts fabricated using conventional approaches such as hot press or spark plasma sintering[2]. There are many challenges in printing efficient and flexible thermoelectric materials using nanocrystals, including scalable synthesis of high-performance nanocrystals, nanocrystal surface oxidation during printing processes, and poor density and electrical conductivity of the printed films[20]. The peak ZT of our flexible films reaches 0.43 at 175 °C due to a combination of high power factor and low thermal conductivity, which is among the highest ZT reported for flexible thermoelectric materials fabricated by printing. The films demonstrate superior flexibility with negligible changes in electric resistance with 150 bending cycles. In addition to the unprecedented high ZT and flexibility, another significant advantage of our work is the use of thioglycolic acid (TGA) as a surface capping agent to inhibit nanocrystal oxidation[21], enabling large-scale manufacturing at ambient conditions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call