Abstract

Demonstrated in this work is a simple random ternary copolymerization strategy to synthesize a series of polymer acceptors, PTPBT-ETx , by polymerizing a small-molecule acceptor unit modified from Y6 with a thiophene connecting unit and a controlled amount of an 3-ethylesterthiophene (ET) unit. Compared to PTPBT of only Y6-like units and thiophene units, PTPBT-ETx (where x represents the molar ratio of the ET unit) with an incorporated ET unit in the ternary copolymers show up-shifted LUMO energy levels, increased electron mobilities, and improved blend morphologies in the blend film with the polymer donor PBDB-T. And the all-polymer solar cell (all-PSC) based on PBDB-T:PTPBT-ET0.3 achieved a high power conversion efficiency over 12.5 %. In addition, the PTPBT-ET0.3 -based all-PSC also exhibits long-term photostability over 300 hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.