Abstract

This paper deals with an active gate drive (AGD) technology for high-power insulated gate bipolar transistors (IGBTs). It is based on an optimal combination of several requirements necessary for good switching performance under hard-switching conditions. The scheme specifically combines together the slow drive requirements for low noise and switching stress and the fast drive requirements for high-speed switching and low switching energy loss. The gate drive can also effectively dampen oscillations during low-current turn-on transient in the IGBT. This paper looks at the conflicting requirements of the conventional gate drive circuit design and demonstrates using experimental results that the proposed three-stage AGD technique can be an effective solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call