Abstract

This article presents an efficient and parallelized implementation of the density matrix renormalization group (DMRG) algorithm for quantum chemistry calculations. The DMRG method as a large-scale multireference electronic structure model is by nature particularly efficient for one-dimensionally correlated systems, while the present development is oriented toward applications for polynuclear transition metal compounds, in which the macroscopic one-dimensional structure of electron correlation is absent. A straightforward extension of the DMRG algorithm is proposed with further improvements and aggressive optimizations to allow its application with large multireference active space, which is often demanded for metal compound calculations. Special efficiency is achieved by making better use of sparsity and symmetry in the operator and wave function representations. By accomplishing computationally intensive DMRG calculations, the authors have found that a large number of renormalized basis states are required to represent high entanglement of the electron correlation for metal compound applications, and it is crucial to adopt auxiliary perturbative correction to the projected density matrix during the DMRG sweep optimization in order to attain proper convergence to the solution. Potential energy curve calculations for the Cr(2) molecule near the known equilibrium precisely predicted the full configuration interaction energies with a correlation space of 24 electrons in 30 orbitals [denoted by (24e,30o)]. The energies are demonstrated to be accurate to 0.6mE(h) (the error from the extrapolated best value) when as many as 10,000 renormalized basis states are employed for the left and right DMRG block representations. The relative energy curves for [Cu(2)O(2)](2+) along the isomerization coordinate were obtained from DMRG and other correlated calculations, for which a fairly large orbital space (32e,62o) is modeled as a full correlation space. The DMRG prediction nearly overlaps with the energy curve from the coupled cluster with singles, doubles, and perturbative triple [CCSD(T)] calculations, while the multireference complete active space self-consistent field (CASSCF) calculations with the small reference configuration (8e,8o) are found to overestimate the biradical character of the electronic state of [Cu(2)O(2)](2+) according to the one-electron density matrix analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.