Abstract

The application of fourth-order finite difference discretisations of the second derivative of concentration with respect to distance from the electrode, in electrochemical digital simulations, is examined further. In the bulk of the diffusion space, a central 5-point scheme is used, and 6-point asymmetric schemes are used at the edges. In this paper, four Runge–Kutta schemes have been used for the time integration. The observed efficiencies, for the Cottrell experiment and chronopotentiometry, are satisfactory, going beyond those for the 3-point scheme. However, it is third-order Runge–Kutta, rather than the fourth-order scheme, which is the most efficient, the two resulting in practically the same errors. This is probably due to the computational procedure where a constant ratio of δ t/ h 2 was used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call