Abstract

ABSTRACTA kind of launching platform driven by two permanent magnet synchronous motor (PMSM) motors which is used to launch kinetic load to hit the target, always faces strong parameter uncertainties and strong external disturbance such as the air current impulsion, which would degrade their tracking accuracy greatly. In this paper, an adaptive robust nonlinear controller is proposed for high-accuracy motion control of the launching platform, in which the adaption law is designed to estimate the unknown coupling coefficients of torque disturbance and feed-forward cancellation technique is used to compensate the coupling torque disturbance and some other constant disturbances. In addition, a nonlinear robust feedback term is designed to inhibit the influence of the parameter estimation error and the other model uncertainty to stabilise the closed-loop system. Considering that some system states are immeasurable due to cost-reduction, volume/weight limitations and structure restriction or heavy measurement noise is usually associated with the measurements, which may also deteriorate the achievable performance of full-state feedback controllers; a high-order sliding-mode observer is used to estimate the unmeasured system states, and it is synthesised with the adaptive robust controller via feed-forward cancellation method. The intermediary virtual control law and the final control law are derived by integrating the backstepping method. Furthermore, the controller theoretically guarantees a prescribed tracking transient performance and final tracking accuracy while achieving asymptotic tracking performance in the presence of parametric uncertainties only, which is very important for high-accuracy tracking control of launching platform. Extensive comparative experimental results are obtained to verify the high performance nature of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.