Abstract
Abstract A new fifth-order, semi-discrete central-upwind scheme with a Lax–Wendroff time discretization procedure for solving Hamilton–Jacobi (HJ) equations is presented. This is an alternative method for time discretization to the popular total variation diminishing (TVD) Runge–Kutta time discretizations. Unlike most of the commonly used high-order upwind schemes, the new scheme is formulated as a Godunov-type method. The new scheme is based on the flux Kurganov, Noelle and Petrova (KNP flux). The spatial discretization is based on a symmetrical weighted essentially non-oscillatory reconstruction of the derivative. Following the methodology of the classic WENO procedure, non-oscillatory weights are then calculated from the ideal weights. Various numerical experiments are performed to demonstrate the accuracy and stability properties of the new method. As a result, comparing with other fifth-order schemes for HJ equations, the major advantage of the new scheme is more cost effective for certain problems while the new method exhibits smaller errors without any increase in the complexity of the computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.