Abstract

In this work, by the Richards-Wolf method, which describes the behavior of electromagnetic radiation at the tight focus, it is shown that high-order spin and orbital Hall effects take place in the focal plane. It is shown that when focusing a linearly polarized optical vortex with unit topological charge, four local subwavelength regions are formed in the focal plane, in which directions of the longitudinal projection of the spin angular momentum are opposite in the neighboring regions. That is, photons falling into neighboring regions in the focus have the opposite spin. This is the spin Hall effect of the 2nd order. It is also shown that when tightly focusing of superposition of cylindrical vector beams of the m-th order and zero order, 2m subwavelength regions are formed in the plane of tight focus, in which directions of the longitudinal projection of the orbital angular momentum are opposite in the neighboring regions. That is, photons falling into the neighboring regions at the focus have the opposite-sign on-axis projections of the orbital angular momentum. This is the orbital Hall effect of the m-th order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.