Abstract
In 1984 Hopfield showed that the time evolution of a symmetric Hopfield neural networks are a motion in state space that seeks out minima in the energy function (i.e., equilibrium point set of Hopfield neural networks). Because high-order Hopfield neural networks have more extensive applications than Hopfield neural networks, the paper will discuss the convergence of high-order Hopfield neural networks. The obtained results ensure that high-order Hopfield neural networks ultimately converge to the equilibrium point set. Our result cancels the requirement of symmetry of the connection weight matrix and includes the classic result on Hopfield neural networks, which is a special case of high-order Hopfield neural networks. In the end, A example is given to verify the effective of our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.