Abstract

The generation of high-order harmonics in small diatomic molecules is theoretically investigated with inclusion of the vibrational degree of freedom. The results obtained from the solution of the time-dependent Schrödinger equation for a model H2 molecule are interpreted by analysing the influence of the vibrational motion in the framework of the strong-field approximation. Ionization launches a vibrational wave packet whose motion is correlated with the motion of the continuum electron wave packet. The harmonics are sensitive to a correlation function quantifying the overlap between the vibrational wave packet at the time of recombination and a vibrational target wave packet, i.e. the wave packet for which de-excitation into the ground state is most likely. We show that more intense harmonics are generated in heavier isotopes due to the slower nuclear motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.