Abstract

In the last decade, high-order methods for Computational Fluid Dynamics (CFD) are becoming attractive for unsteady scale-resolving-simulations in industrial CFD applications, due to their advantages of low numerical dissipation, high efficiency on modern architectures and quasi mesh-independence. However, the generation of body-fitted mesh for high-order methods is still a significant bottleneck and often determines the overall quality of the solution. To avoid the complexity of mesh generation, the present work combines the numerical advantages of the high-order Flux Reconstruction (FR) method and the simplicity of the mesh generation based on Immersed Boundary Method (IBM) that allows solving flow past obstacles on a non body-fitted mesh. The volume penalization method is selected for its ease of implementation and robustness. The proposed method is validated by several test cases, including flow past a cylinder and NACA0012 airfoil for static and moving boundaries. Good agreement with body-fitted simulation is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.