Abstract
The shallow water equations are used to model flows in rivers and coastal areas, and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. These equations have still water steady state solutions in which the flux gradients are balanced by the source term. It is desirable to develop numerical methods which preserve exactly these steady state solutions. Another main difficulty usually arising from the simulation of dam breaks and flood waves flows is the appearance of dry areas where no water is present. If no special attention is paid, standard numerical methods may fail near dry/wet front and produce non-physical negative water height. A high-order accurate finite volume weighted essentially non-oscillatory (WENO) scheme is proposed in this paper to address these difficulties and to provide an efficient and robust method for solving the shallow water equations. A simple, easy-to-implement positivity-preserving limiter is introduced. One- and two-dimensional numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.