Abstract

This thesis discusses numerical approximations of electromagnetic wave propagation, which is mathematically described by the Maxwell equations. These equations are typically either formulated as integral equations or as (partial) differential equations. Throughout this thesis, the numerical discretisation (i.e.~approximation) of the partial differential equations is considered. More specifically, out of the numerous existing discretisation techniques this work focuses on H(curl)-conforming high-order finite element methods (FEM) and high-order discontinuous finite element methods (DG-FEM) for the Maxwell equations. One of the first, and most obvious, questions in designing a high-order FEM and DG-FEM is the choice of basis functions. The Maxwell equations have a special geometric structure. If that is not well-represented by the basis functions, the numerical approximation may lead to spurious, non-physical solutions. Another important feature of a high-order basis is hierarchy. A hierarchic construction makes it easier to use different orders of approximation in different parts of the computational domain. The discussion of a set of basis functions that both preserve the geometric structure of the Maxwell equations -- that is H(curl)-conformity for the formulations used in this thesis -- and have a hierarchic structure forms part of the work presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.