Abstract
Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. In a recent publication, we have shown that DG methods also adapt readily to execution on modern, massively parallel graphics processors (GPUs). A number of qualities of the method contribute to this suitability, reaching from locality of reference, through regularity of access patterns, to high arithmetic intensity. In this article, we illuminate a few of the more practical aspects of bringing DG onto a GPU, including the use of a Python-based metaprogramming infrastructure that was created specifically to support DG, but has found many uses across all disciplines of computational science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.