Abstract

We analyse the two--dimensional all--sky distribution of rich Abell and ACO galaxy clusters by using counts in cells and measuring the high--order area--averaged angular correlation functions. Confirming previous results, we find a well defined hierarchical relation between the two and three--point correlation functions, remarkably constant with scale. In the angular range $2^\circ \le \theta \le 4^\circ$, the southern sample, limited at $b_{II} \le -40^\circ$ and including both Abell and ACO clusters, shows a remarkable hierarchical behavior up to the 6th order, while northern Abell clusters give positive correlations in the same range only up to the 4th order. The inferred deprojected values of the 3--D coefficients $S_J$, where $S_J = \bar{\xi}_J / {\bar{\xi}_2}^{J-1}$, are similar to those measured for the galaxy distribution, and consistent with theoretical predictions. These results are confirmed to the 4th order by our analysis of a 3--D sample of Abell and ACO clusters. Assuming that selection effects and / or the absence of a cluster fair sample are the reason of the difference between the two galactic hemispheres, and between Abell and ACO clusters, our results indicate that the statistical properties of the cluster distribution originate from the underlying galaxy distribution and show that the biasing between clusters and galaxies is non--linear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.