Abstract

A high-order compact difference scheme for solving the two-dimensional (2D) elliptic problems is proposed by including compact approximations to the leading truncation error terms of the central difference scheme. A multigrid method is employed to overcome the difficulties caused by conventional iterative methods when they are used to solve the linear algebraic system arising from the high-order compact scheme. Numerical experiments are conducted to test the accuracy and efficiency of the present method. The computed results indicate that the present scheme achieves the fourth-order accuracy and the effect of the multigrid method for accelerating the convergence speed is significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.