Abstract

Different to traditional clustering methods that deal with one single type of data, High-Order Co- Clustering (HOCC) aims to cluster multiple types of data simultaneously by utilizing the inter- or/and intra-type relationships across different data types. In existing HOCC methods, data points routinely enter the objective functions with squared residual errors. As a result, outlying data samples can dominate the objective functions, which may lead to incorrect clustering results. Moreover, existing methods usually suffer from soft clustering, where the probabilities to different groups can be very close. In this paper, we propose an L1 -norm symmetric nonnegative matrix tri-factorization method to solve the HOCC problem. Due to the orthogonal constraints and the symmetric L1 -norm formulation in our new objective, conventional auxiliary function approach no longer works. Thus we derive the solution algorithm using the alternating direction method of multipliers. Extensive experiments have been conducted on a real world data set, in which promising empirical results, including less time consumption, strictly orthogonal membership matrix, lower local minima etc., have demonstrated the effectiveness of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.