Abstract
In Gaussian measurement models, the measurements are given by a known function of the unknown parameter vector, contaminated by additive zero-mean Gaussian noise. When the function is linear, the resulting maximum likelihood estimate (MLE) is well-known to be efficient [unbiased, with a mean square estimation error (MSE) matrix attaining the Cramer–Rao lower bound (CRLB)]. However, when the function is nonlinear, the MLE is only asymptotically efficient. The classical derivation of its asymptotic efficiency uses a first-order perturbation analysis, relying on a “small-errors” assumption, which under subasymptotic conditions turns inaccurate, rendering the MLE generally biased and inefficient. Although a more accurate (higher-order) performance analysis for such cases is of considerable interest, the associated derivations are rather involved, requiring cumbersome notations and indexing. Building on the recent assimilation of tensor computations into signal processing literature, we exploit the tensor formulation of higher-order derivatives to derive a tractable formulation of a higher (up to third-) order perturbation analysis, predicting the bias and MSE matrix of the MLE of parameter vectors in general nonlinear models under subasymptotic conditions. We provide explicit expressions depending on the first three derivatives of the nonlinear measurement function, and demonstrate the resulting ability to predict the “efficiency gap” (relative excess MSE beyond the CRLB) in simulation experiments. We also provide MATLAB code for easy computation of our resulting expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.