Abstract

Efficient, high-order accurate methods for the numerical solution of the standard (narrow-angle) parabolic equation for underwater sound propagation are developed. Explicit and implicit numerical schemes, which are second- or higher-order accurate in time-like marching and fourth-order accurate in the space-like direction are presented. The explicit schemes have severe stability limitations and some of the proposed high-order accurate implicit methods were found conditionally stable. The efficiency and accuracy of various numerical methods are evaluated for Cartesian-type meshes. The standard parabolic equation is transformed to body fitted curvilinear coordinates. An unconditionally stable, implicit finite-difference scheme is used for numerical solutions in complex domains with deformed meshes. Simple boundary conditions are used and the accuracy of the numerical solutions is evaluated by comparing with an exact solution. Numerical solutions in complex domains obtained with a finite element method show excellent agreement with results obtained with the proposed finite difference methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call