Abstract

In this work, two series of novel high-nitrogen tetrazole 3-N-oxides substituted by different nitrotetrazoles were designed, and their structure and properties were investigated by using the density functional theory (DFT) method. The results shown that though there are only one to two energetic substituents in the structure, because of the high nitrogen content, ideal oxygen balance, and the big conjugated structure, all eight designed compounds not only have high heat of formation (655.4–845.6 kJ/mol), high density (1.83–1.93 g/cm3), and high detonation performance (detonation velocity: 9.06–9.50 km/s; detonation pressure: 36.7–41.8 GPa), but also possess reduced impact sensitivity (23–98 cm). Fully analyzing the energy and sensitivity, A1 and A4 have higher energy and lower sensitivity than one famous high energy compound 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), and A3, B1, and B4 have comparable overall performance with HMX, showing that these five designed compounds may be considered as the potential high energy density compounds. In addition, the introduction of one extra nitro group into the tetrazole 3-N-oxide could not improve the combination property generally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.