Abstract

[Ru(2,2′-bipyridine) 2(4,4′-dicarboxy-2,2′-bipyridine)] 2+ (RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. In the present study, we demonstrated the usefulness of this probe for monitoring the rotational diffusion of high-molecular-weight (MW) proteins. Using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source, we compared the intensity and anisotropy decays of RuBDc conjugated to immunoglobulin G (IgG) and immunoglobulin M (IgM), which show a six-fold difference in MW We obtained slightly longer lifetimes for IgM (< τ>=428 ns in buffer) than IgG (< τ>=422 ns in buffer) in the absence and presence of glycerol, suggesting somewhat more efficient shielding of RuBDc from water in IgM than in IgG. The anisotropy decay data showed longer rotational correlation times for IgM (1623 and 65.7 ns in buffer) as compared to IgG (264 and 42.5 ns in buffer). Importantly, the ratio of the long rotational correlation times of IgM to IgG in buffer was 6.2, which is very close to that of MW of IgM to IgG (6.0). The shorter correlation times are most likely to be associated with domain motions within the proteins. The anisotropy decays reflect both the molecular size and shape of the immunoglobulins, as well as the viscosity. These results show that RuBDc can have numerous applications in studies of high-MW protein hydrodynamics and in fluorescence polarization immunoassays (FPI) of high-MW analytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.