Abstract

PurposeTo determine high-mobility group box 1 (HMGB1) expression during experimental dry eye (EDE) and dry eye-like culture conditions and elucidate its role in corneal dry eye-related inflammation.MethodsEDE was induced in 8- to 12-week-old C57BL/6 mice. Corneal tissue sections and lysates from EDE and untreated mice were evaluated for HMGB1 expression by immunostaining and quantitative real-time PCR (qPCR). For in vitro studies, human corneal epithelial cells (HCEC) were treated with hyperosmolar media, toll-like receptor (TLR) agonists, or proinflammatory cytokines to determine HMGB1 expression. HCEC were also treated with human recombinant HMGB1 (hrHMGB1) alone or in combination with inflammatory stimuli, and TNFα, IL-6, and IL-8 expression evaluated by qPCR and ELISA. Nuclear factor-κB (NF-κB) p65 nuclear translocation was determined by immunostaining.ResultsEDE mice had higher corneal HMGB1 RNA and protein expression compared to untreated animals. In HCEC, hyperosmolar stress and TNFα treatment stimulated HMGB1 production and secretion into culture supernatants. However, in vitro stimulation with hrHMGB1 did not induce secretion of TNFα, IL-6, or IL-8 or NF-κB p65 nuclear translocation. In addition, the inflammatory response elicited by TLR agonists fibroblast-stimulating lipopeptide-1 and lipopolysaccharide was not enhanced by hrHMGB1 treatment.ConclusionsHMGB1 expression was enhanced by dry eye conditions in vivo as well as in vitro, during hyperosmolar stress and cytokine exposure, suggesting an important role for HMGB1 in dry eye disease. However, no direct inflammatory effect was observed with HMGB1 treatment. Therefore, under these conditions, HMGB1 does not contribute directly to dry eye-induced inflammation and its function at the ocular surface needs to be explored further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call