Abstract

Hypoxia is often found in solid tumors and is associated with tumor progression and poor clinical outcomes. The exact mechanisms related to hypoxia-induced invasion and metastasis remain unclear. We elucidated the mechanism by which the nuclear-damage-associated molecular pattern molecule, high-mobility group box 1 (HMGB1), released under hypoxic stress, can induce an inflammatory response to promote invasion and metastasis in hepatocellular carcinoma (HCC) cells. Caspase-1 activation was found to occur in hypoxic HCC cells in a process that was dependent on the extracellular release of HMGB1 and subsequent activation of both Toll-like receptor 4 (TLR4)- and receptor for advanced glycation endproducts (RAGE)-signaling pathways. Downstream from hypoxia-induced caspase-1 activation, cleavage and release of proinflammatory cytokines interleukin (IL)-1β and -18 occurred. We further demonstrate that overexpression of HMGB1 or treatment with recombinant HMGB1 enhanced the invasiveness of HCC cells, whereas stable knockdown of HMGB1 remarkably reduced HCC invasion. Moreover, in a murine model of HCC pulmonary metastasis, stable knockdown of HMGB1 suppressed HCC invasion and metastasis. These results suggest that in hypoxic HCC cells, HMGB1 activates TLR4- and RAGE-signaling pathways to induce caspase-1 activation with the subsequent production of multiple inflammatory mediators, which, in turn, promote cancer invasion and metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call