Abstract
High-Hall-electron-mobility and high-performance Schottky barrier diodes for edge-defined fed-grown () β-Ga2O3 single crystals have been demonstrated. A high electron mobility of 886 cm2/(V·s) at 85 K was obtained. By theoretical specific scattering mechanisms, it was found that the electron mobility for >200 K is limited by optical phonon scattering and that for <100 K by ionized impurity scattering. On Schottky barrier diodes with Ni contacts, the current density for the forward voltage was 70.3 A/cm2 at 2.0 V, and a nearly ideal ideality factor of 1.01 was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.