Abstract
Polyimide (PI) aerogels are among the most promising organic aerogels as thermal insulation materials, but brittle compressive strength severely limits their practical applications. Herein, we develop a novel procedure to prepare lightweight and strong PI aerogels crosslinked with 4,4′-oxydianiline (ODA)-functionalized carbon nanotubes (CNTs). PI gels could be produced by cross-linking anhydride capped polyamic acid oligomers, followed by chemical imidizing. CNTs, treated through ODA functionalization, not only provide affinity with solvents, but also react with terminal anhydride groups of PAA to form strong covalent bonding with polymer chains. These modified CNTs could serve both as rigid crosslinker and linear reinforcement, which can effectively suppress the shrinkage of aerogels during preparation process. The obtained aerogels possess developed mesoporous structure with density as low as 0.107–0.121 g cm−3. The addition of only a small amount of CNTs could increase the mechanical properties of PI aerogels drastically, e.g. a 19-fold increase in Young's modulus and 15-fold increase in yield strength. The addition of CNTs could also improve thermal stability, with only a slight increase in thermal conductivity from 0.018 W m−1 K−1 to 0.023 W m−1 K−1 at room temperature. These high-mechanical-strength aerogels with high thermal stability and low thermal conductivity render them potential candidates for various aerospace applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.