Abstract
The incorporation of molecularly imprinted materials into photonic crystals presents an ideal sensing platform on which analyte recognition and analyte-dependent transduction methodology could be realized simultaneously. Here, a colorimetric molecularly imprinted photonic polymer (MIPP) sensor has been developed for the sensitive and selective chiral recognition of amino acids. The sensor was fabricated by infiltrating a polystyrene photonic crystal template with precursor and imprinting molecules, followed by a thermal polymerization. After removal of templates, the resulted MIPP consists of a three-dimensional, highly-ordered and interconnected macroporous array. The amino acids recognition events thus could be directly transferred into visible color changes and readable optical signals through the diffraction peak shifts of MIPP. A function relationship was found between the diffraction peak shift and the concentration of l-pyroglutamic acid (l-Pga) in the range of 0.01–0.50mM at pH 4, and a linear relationship with a slope of 278nm/mM was found when the concentration of l-Pga was lower than 0.20mM. The chiral recognition process accompanying with a gradual color change of MIPP can be easily visualized by the naked eye. The developed method has been applied to detect l-Pga in monosodium glutamate samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.