Abstract

In this work, a highly ordered mesoporous carbon nitride nanorods with 971–1124 m2 g–1 of superhigh specific surface area, 1.31–1.79 cm3 g–1 of ultralarge pore volume, bimodal mesostructure, and 9.3–23 wt % of high N content was prepared via a facile nanocasting approach using SBA-15 as template and hexamethylenetetramine as carbon nitride precursor, and the specific surface area and pore volume as well as N content are strongly dependent on the chosen precursor and pyrolysis temperature. The as-prepared materials were well characterized by HRTEM, FESEM, XRD, BET, Raman, FT-IR, XPS, and the textural structure and morphology were confirmed. The finding breaks through the bottleneck problems for fabricating mesoporous carbon nitride with both ultrahigh surface area and super large pore volume by employing an unexplored hexamethylenetetramine as carbon nitride precursor. The current synthetic strategy can be extended to the preparation of various mesoporous carbon nitride with different textural characterist...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.