Abstract

Recombination of free charges in organic semiconductors reduces the available photo-induced charge-carriers and restricts photovoltaic efficiency. In this work, the chiral organic semiconductors (Y6-R and Y6-S with enantiopure R- and S- chiral alkyl sidechains) are designed and synthesized, which show effective aggregation-induced chirality through mainchain packing with chiral conformations in non-centrosymmetric space groups with tilt chirality. Based on the analysis of spin-injection, magnetic-hysteresis loop, and thermodynamics and dynamics of the excited state, we suggest that the aggregation-induced chirality can generate spin-polarization, which suppresses charge recombination and offers more available charge-carriers within Y6-R and Y6-S relative to the achiral counterpart (Y6). Then the chiral Y6-R and Y6-S show enhanced catalytic activity with optimal average hydrogen evolution rates of 205 and 217 mmol h-1 g-1 , respectively, 60-70 % higher than Y6, when they are employed as nanoparticle photocatalysts in photocatalytic hydrogen evolution under simulated solar light, AM1.5G, 100 mW cm-2 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.