Abstract

A reported water-stable Zn-MOF ([Zn(L)2(bpa)(H2O)2]·2H2O, H2L = 5-(2-cyanophenoxy) isophthalic acid has been prepared via a low-cost, general and efficient hydrothermal method. It is worth noting the structural features of Zn-MOF which exhibit the unsaturated metal site and the main non-covalent interactions including O⋯H, N⋯H and π-π stacking interactions, which lead to strong antibacterial and good tetracycline degradation ability. The average diameter of the Zn-MOF inhibition zone against Escherichia coli and Staphylococcus aureus was 12.22 mm and 10.10 mm, respectively. Further, the water-stable Zn-MOF can be employed as the effective photocatalyst for the photodegradation of tetracycline, achieving results of 67% within 50 min, and it has good cyclic stability. In addition, the photodegradation mechanism was studied using UV-vis diffuse reflection spectroscopy (UV-VIS DRS) and valence-band X-ray photoelectron spectroscopy (VB-XPS) combined with the ESR profile of Zn-MOF, which suggest that ·O2- is the main active species responsible for tetracycline photodegradation. Also, the photoelectric measurement results show that Zn-MOF has a good photocurrent generation performance under light. This provides us with a new perspective to investigate Zn-MOF materials as a suitable multifunctional platform for future environmental improvement applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.