Abstract

In this study, cotton e-textiles were obtained using two types of graphene oxide. The first type of graphene oxide was synthesized using the Hummers' method. The second type was obtained by the electrochemical exfoliation of graphite in an ammonium salt solution. It was shown that e-textiles based on electrochemically exfoliated graphene have a higher electrical conductivity (2 kΩ/sq) than e-textiles based on graphene oxide obtained by the Hummers' method (585 kΩ/sq). In addition, textiles based on electrochemically exfoliated graphene exhibit better washing and mechanical stress stability. The electrical resistance of the e-textiles increased only 1.86 times after 10 cycles of washing, compared with 48 times for the Hummers' method graphene oxide textiles. The X-ray photoelectron spectra of the two types of graphene oxides showed similarity in their functional compositions after reduction. Studies of individual graphene flakes by atomic force microscopy showed that graphene oxide of the second type had a smaller lateral size. Raman spectroscopy showed a higher degree of sp2 structure regeneration after reduction for the second type of graphene. These properties and the tendency to form agglomerated particles determine the mechanochemical stability and high electrical conductivity of e-textiles based on electrochemically exfoliated graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.