Abstract
Photocatalytic reduction of carbon dioxide (CO2) into valuable hydrocarbon such as methane (CH4) using water as reducing agent is a good strategy for environment and energy applications. In this study, a facile and simple sol-gel method was employed for the synthesis of metal (Cu and Ag) loaded nanosized N/TiO2 photocatalyst. The prepared photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, BET Surface area analyzer, X-ray photoelectron spectroscopy and UV–vis diffuses reflectance spectroscopy. The photocatalytic conversion of CO2 into methane was carried out under visible light irradiation (λ≥420nm) by prepared photocatalysts in order to evaluate the photocatalytic efficiency. The results demonstrate that Ag loaded N/TiO2 showed enhanced photocatalytic performance for methane production from CO2 compared to other Cu–N/TiO2, N/TiO2 and TiO2 photocatalysts. The improvement in the photocatalytic activity could be attributed to high specific surface area, extended visible light absorption and suppressed recombination of electron – hole pair due to synergistic effects of silver and nitrogen in the Ag–N/TiO2 photocatalyst. This study demonstrates that Ag–N/TiO2 is a promising photocatalytic material for photocatalytic reduction of CO2 into hydrocarbons under visible light irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.