Abstract

Marama bean is an indigenous southern African oilseed legume with an unusual protein composition. Hence, its rheological properties were studied. Marama protein formed a highly viscous and extensible dough when compared to soya and gluten. With a dough of 38% moisture, marama protein extensibility was very high (304% of its original length), twice that of gluten and soya, and this increased considerably (>3-fold) when the moisture content was increased to 45%. With added peroxidase, the storage modulus (G') of marama protein dough increased with time, suggesting the formation of new and strong protein networks. Dityrosine crosslinks were detected in the doughs. Marama protein showed a single transition with a denaturation temperature higher than soya glycinin. Marama protein was more hydrophobic and contained more β-sheet structure than did soya. Thus, the highly viscous and extensible rheological behaviour of marama protein is probably related to its high β-sheet conformation, hydrophobic interactions and tyrosine crosslinks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call