Abstract

BackgroundWhen females mate with different males, competition for fertilizations occurs after insemination. Such sperm competition is usually summarized at the level of the population or species by the parameter, P2, defined as the proportion of offspring sired by the second male in double mating trials. However, considerable variation in P2 may occur within populations, and such variation limits the utility of population-wide or species P2 estimates as descriptors of sperm usage. To fully understand the causes and consequences of sperm competition requires estimates of not only mean P2, but also intra-specific variation in P2. Here we investigate within-population quantitative variation in P2 using a controlled mating experiment and microsatellite profiling of progeny in the multiply mating stalk-eyed fly, Teleopsis dalmanni.ResultsWe genotyped 381 offspring from 22 dam-sire pair families at four microsatellite loci. The mean population-wide P2 value of 0.40 was not significantly different from that expected under random sperm mixing (i.e. P2 = 0.5). However, patterns of paternity were highly variable between individual families; almost half of families displayed extreme second male biases resulting in zero or complete paternity, whereas only about one third of families had P2 values of 0.5, the remainder had significant, but moderate, paternity skew.ConclusionOur data suggest that all modes of ejaculate competition, from extreme sperm precedence to complete sperm mixing, occur in T. dalmanni. Thus the population mean P2 value does not reflect the high underlying variance in familial P2. We discuss some of the potential causes and consequences of post-copulatory sexual selection in this important model species.

Highlights

  • When females mate with different males, competition for fertilizations occurs after insemination

  • Such variation can severely limit the utility of population-wide P2 estimates as descriptors of sperm usage, because it fails to account for variation in male performance (P2 is derived from the performance of both first and second males), or aspects of female morphology and behaviour, such as sperm storage, that may differ between individual females [9]

  • Using controlled mating experiments, assigning paternity using microsatellite markers, we demonstrated that sperm usage is highly variable in the stalk-eyed fly T. dalmanni (Figure 1)

Read more

Summary

Introduction

When females mate with different males, competition for fertilizations occurs after insemination Such sperm competition is usually summarized at the level of the population or species by the parameter, P2, defined as the proportion of offspring sired by the second male in double mating trials. Considerable variation in P2 often occurs between populations and individuals, and intra-specific values of P2 can range from zero to one [2,5,8] Such variation can severely limit the utility of population-wide (or species) P2 estimates as descriptors of sperm usage, because it fails to account for variation in male performance (P2 is derived from the performance of both first and second males), or aspects of female morphology and behaviour, such as sperm storage, that may differ between individual females [9]. In order to fully understand the causes and consequences of sperm competition it is necessary to estimate mean levels of sperm precedence, and intra-specific variation around that mean

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.