Abstract

Marine phytoplankton growth at high latitudes is extensively limited by iron availability. Icebergs are a vector transporting the bioessential micronutrient iron into polar oceans. Therefore, increasing iceberg fluxes due to global warming have the potential to increase marine productivity and carbon export, creating a negative climate feedback. However, the magnitude of the iceberg iron flux, the subsequent fertilization effect and the resultant carbon export have not been quantified. Using a global analysis of iceberg samples, we reveal that iceberg iron concentrations vary over 6 orders of magnitude. Our results demonstrate that, whilst icebergs are the largest source of iron to the polar oceans, the heterogeneous iron distribution within ice moderates iron delivery to offshore waters and likely also affects the subsequent ocean iron enrichment. Future marine productivity may therefore be not only sensitive to increasing total iceberg fluxes, but also to changing iceberg properties, internal sediment distribution and melt dynamics.

Highlights

  • Marine phytoplankton growth at high latitudes is extensively limited by iron availability

  • Increased biological activity following iceberg passage in the Southern Ocean is indicated by both satellite-derived chlorophyll[7,8,9] and limited in situ observations[10,11,12], supporting the hypothesis that icebergs are ocean Fe fertilizers

  • Ice discharge in both the Arctic and Antarctic has increased in response to recent climate change[13,14]; potentially increasing Fe supply to polar oceans, enhancing productivity and increasing the resultant carbon (C) export[7,11,15]

Read more

Summary

Introduction

Marine phytoplankton growth at high latitudes is extensively limited by iron availability. Combining this new dataset with numerical modeling, we constrain lower limits to the fraction of iceberg-derived Fe that can be transported to the open ocean demonstrating that Fe loss processes from icebergs are highly sensitive to the location of Fe-rich layers within ice. Using these results, we explore the implications for primary production and C export, highlighting the large uncertainties that remain concerning the fate of icebergderived Fe immediately after its discharge into the ocean and variability in marine C export efficiency.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.