Abstract

Coseismic coastal deformation is often used to understand slip on offshore faults in large earthquakes but in the 2016 MW7.8 Kaikōura earthquake multiple faults ruptured across and sub-parallel to the coastline. Along ∼110 km of coastline, a rich dataset of coastal deformation comprising airborne lidar differencing, field surveying and satellite geodesy reveals highly variable vertical displacements, ranging from −2.5 to 6.5 m. These inform a refined slip model for the Kaikōura earthquake which incorporates changes to the slip on offshore faults and inclusion of an offshore reverse crustal fault that accounts for broad, low-amplitude uplift centered on Kaikōura Peninsula. The exceptional detail afforded by differential lidar and the high variability in coastal deformation combine to form the highest-resolution and most complex record of coseismic coastal deformation yet documented. This should prompt reassessment of coastal paleoseismic records that may not have considered multi-fault ruptures and high complexity deformation fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call