Abstract

This work indicates the synthesis of uniform core/shell nanostructures (AuR/Ag) with different thicknesses of Ag shell by the double seed method. This method consists of two self-sufficient progresses, one seed for the formation of gold nanorods (AuRs) and one for the formation of the Ag shell for the gold nanorods to form the AuR/Ag. Acid ascorbic (L-AA) acts as a weak reducing agent and hexadecyltrimethylammonium chloride (CTAC) acts as a surfactant for Ag shell. The formation and growth of the Ag shell were carefully investigated by changing the reaction factors such as temperature, time, and concentration of AgNO3. The greater the concentration of AgNO3 shelling precursor, the thicker the shell and therefore the more high-energy vibrational modes appear in the near-ultraviolet region. In survey of surface-enhanced Raman scattering effect of AuRs and AuR/Ag with Rhodamine B (RB) detector, the results show that AuR/Ag has the ability to enhance Raman signal much better than AuRs. At the same time, the thicker the Ag shell, the better the Raman signal enhancement ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.