Abstract

Band gap opening in bilayer graphene (BLG) under a vertical electric field is important for the realization of high performance graphene-based semiconductor devices, and thus, the synthesis of uniform and large-area BLG is required. Here we demonstrate the synthesis of a highly uniform BLG film by chemical vapor deposition (CVD) over epitaxial Cu−Ni (111) binary alloy catalysts. The relative concentration of Ni and Cu as well as the growth temperature and cooling profile was found to strongly influence the uniformity of the BLG. In particular, a slow cooling process after switching off the carbon feedstock is important for obtaining a uniform second layer, covering more than 90% of the total area. Moreover, low-energy electron microscopy (LEEM) study revealed the second layer grows underneath the first layer. We also investigated the stacking order by Raman spectroscopy and LEEM and found that 70–80% of bilayer graphene has Bernal stacking. The metastable 30°-rotated orientations were also observed both i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.