Abstract

The applicability of cine blood flow measurements in a clinical setting is often compromised by the long scan times associated with phase-contrast imaging. In this work, we propose an extension to the k-t principal component analysis method and demonstrate that by definition of spatial compartment-dependent temporal basis functions, significant improvements in reconstruction accuracy can be achieved relative to the original k-t principal component analysis and k-t SENSE formulations. Using this method, it is shown that prospective nominal undersampling of up to 16 corresponding to a net acceleration factor of 8 including training data acquisition can be realized while keeping the error in stroke volume below 5%. As a practical application, the acquisition of cine flow data in the aorta is demonstrated permitting assessment of two-dimensional velocity images and pulse wave velocities at 100 frames per second in a single breathhold per slice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call