Abstract
In clinical magnetic resonance imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in compressive sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some transform domain can be accurately reconstructed from very highly undersampled K-space data by solving a convex l(1) -minimization problem. Although l(1)-based techniques are extremely powerful, they inherently require a degree of over-sampling above the theoretical minimum sampling rate to guarantee that exact reconstruction can be achieved. In this paper, we propose a generalization of the CS paradigm based on homotopic approximation of the l(0) quasi-norm and show how MR image reconstruction can be pushed even further below the Nyquist limit and significantly closer to the theoretical bound. Following a brief review of standard CS methods and the developed theoretical extensions, several example MRI reconstructions from highly undersampled K-space data are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.