Abstract

AbstractIn this article we have investigated the electrical control of the exchange coupling (J) between donor-bound electrons in silicon with a detuning gate bias, crucial for the implementation of the two-qubit gate in a silicon quantum computer. We found that the asymmetric 2P–1P system provides a highly tunable exchange curve with mitigated J-oscillation, in which 5 orders of magnitude change in the exchange coupling can be achieved using a modest range of electric field (3 MV/m) for ~15-nm qubit separation. Compared with the barrier gate control of exchange in the Kane qubit, the detuning gate design reduces the gate density by a factor of ~2. By combining large-scale atomistic tight-binding method with a full configuration interaction technique, we captured the full two-electron spectrum of gated donors, providing state-of-the-art calculations of exchange energy in 1P–1P and 2P–1P qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.