Abstract

The control of surface wettability through a combination of surface roughness, chemical composition, and structural modification has attracted significant attention for antifogging and antibacterial applications. Herein, a two-step spin-coating method for amphiphilic organic-inorganic hybrid materials with incorporated transition metal ions is presented. The coating solution was prepared via photochemical thiol-ene click reaction between the mercapto functional group in trimethylolpropane tris(3-mercaptopropionate) and the vinyl functionalized silica precursor 3-(trimethoxysilyl)propyl methacrylate. In the first step of coating, a glass substrate was coated using a solution of metal nitrate hydrates and subsequently showed hydrophobic properties. As the second step, the spin-coated glass substrate was further coated with silica nanoparticles (SiO2 NPs) and polycaprolactone triol (PCT) suspension, where the contents of SiO2 NPs were fixed at 0.1 wt %, unless otherwise noted. The coated substrate exhibited hydrophilic properties. For comparison, the coating was also formulated with the SiO2 NPs/PCT suspension without SiO2 NPs and with 0.5 wt % SiO2 NPs as well as by adjusting different coating layer thicknesses. The surface morphology and chemical compositions of the obtained coating materials were analyzed by field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The transparency and static contact angle of coated samples were measured by UV-visible spectrophotometry and drop shape analysis, respectively. It was concluded that our novel hybrid coating materials exhibited excellent antibacterial and antifogging properties with extremely high scratch resistance and transparency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.