Abstract

We report on the synthesis of hard, adhesive, and highly transparent bilayer organosilicate thin films on large poly(methyl methacrylate) substrates by atmospheric plasma, in ambient air, at room temperature, in a one-step process, using a single precursor. The method overcomes the challenge of fabricating coatings with high mechanical and interfacial properties in a one-step process. The bottom layer is a carbon-bridged hybrid silica with excellent adhesion with the poly(methyl methacrylate) substrate, and the top layer is a dense silica with high Young’s modulus, hardness, and scratch resistance. The bilayer structure exhibited ~100% transmittance in the visible wavelength range, twice the adhesion energy and three times the Young’s modulus of commercial polysiloxane sol–gel coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.