Abstract

Recently, eutectogels have emerged as ideal candidates for flexible wearable strain sensors. However, the development of eutectogels with robust mechanical strength, high stretchability, excellent transparency, and desirable conductivity remains a challenge. Herein, a covalently cross-linked eutectogel was prepared by exploiting the high solubility of oligoethylene glycol in a polymerizable deep eutectic solvent (DES) form of acrylic acid (AA) and choline chloride (ChCl). The resulting eutectogel exhibited high transparency (90%), robust mechanical strength (up to 1.5 MPa), high stretchability (up to 962%), and desirable ionic conductivity (up to 1.22 mS cm−1). The resistive strain sensor fabricated from the eutectogel exhibits desirable linear sensitivity (GF: 1.66), wide response range (1–200%), and reliable stability (over 1000 cycles), enabling accurate monitoring of human motions (fingers, wrists, and footsteps). We believe that our DES-based eutectogel has great potential for applications in wearable strain sensors with high sensitivity and reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.