Abstract
Human-machine haptic interaction is typically detected by variations in friction, roughness, hardness, and temperature, which combines to create sensation of surface texture change. Most of the current technologies work to simulate changes in tactile perception (via electrostatic, lateral force fields, vibration motors, etc.) without creating actual topographical transformations. This makes it challenging to provide localized feedback. Here, a new concept for on-demand surface texture augmentation that is capable of physically forming local topographic features in any predesigned pattern is demonstrated. The transparent, flexible, integrable device comprises of a hybrid electrode system with conductive hydrogel, silver nanowires, and conductive polymers with acrylic elastomer as the dielectric layer. Desired surface textures can be controlled by a predesigned pattern of electrodes, which operates as independent or interconnected actuators. Surface features with up to a height of 0.155 mm can be achieved with a transformation time of less than a second for a device area of 18 cm2 . High transparency levels of 76% are achieved due to the judicious choice of the electrode and the active elastomer layer. The capability of localized and controlled deformations makes this system highly useful for applications such as display touchscreens, touchpads, braille displays, on-demand buttons, and microfluidic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.