Abstract

Atmospheric aerosols are a major pollutant in Beijing—a megacity in China. To achieve a better understanding of the characteristics, sources and processes of aerosols in Beijing, an Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at an urban site in July 2006 to obtain size-resolved chemical composition of non-refractory submicron particles (NR-PM 1) at 5 min resolution. During this study, NR-PM 1 was on average composed of 25% sulfate, 22% nitrate, 16% ammonium, 1.4% chloride and 35% of organic aerosol (OA) species. The average size distributions of sulfate, nitrate and ammonium were very similar and characterized by a prominent accumulation mode peaking at D va ≈ 600 nm. The average size distribution of OA was significantly broader due to the presence of an ultrafine mode. Multivariate analysis of the AMS organic spectra with Positive Matrix Factorization (PMF) identified a hydrocarbon-like OA (HOA) and two oxygenated OA (OOA) components. The HOA component likely corresponded to primary OA material associated with combustion-related emissions. The two OOA components, which likely corresponded to more oxidized (OOA I) and less oxidized (OOA II) secondary OA materials, accounted for 45 ± 16% and 16 ± 7.2%, respectively, of the observed OA mass. OOA I correlated well with sulfate while OOA II correlated well with nitrate. The particle loading, composition and size distributions observed during this campaign were highly variable. Backtrajectory analysis indicates that this variability correlated with the varying impacts of regional and local sources and processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.