Abstract

BackgroundComplete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and β-xylosidase. β-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable β-xylosidases have been a focus of attention as industrially important enzymes due to their long shelf life and role in the relief of end-product inhibition of xylanases caused by xylo-oligosaccharides. Therefore, a highly thermostable β-xylosidase with high specific activity has significant potential in lignocellulose bioconversion.ResultsA gene encoding a highly thermostable GH39 β-xylosidase was cloned from Geobacillus sp. strain WSUCF1 and expressed in Escherichia coli. Recombinant β-xylosidase was active over a wide range of temperatures and pH with optimum temperature of 70°C and pH 6.5. It exhibited very high thermostability, retaining 50% activity at 70°C after 9 days. WSUCF1 β-xylosidase is more thermostable than β-xylosidases reported from other thermophiles (growth temperature ≤ 70°C). Specific activity was 133 U/mg when incubated with p-nitrophenyl xylopyranoside, with Km and Vmax values of 2.38 mM and 147 U/mg, respectively. SDS-PAGE analysis indicated that the recombinant enzyme had a mass of 58 kDa, but omitting heating prior to electrophoresis increased the apparent mass to 230 kDa, suggesting the enzyme exists as a tetramer. Enzyme exhibited high tolerance to xylose, retained approximately 70% of relative activity at 210 mM xylose concentration. Thin layer chromatography showed that the enzyme had potential to convert xylo-oligomers (xylobiose, triose, tetraose, and pentaose) into fermentable xylose. WSUCF1 β-xylosidase along with WSUCF1 endo-xylanase synergistically converted the xylan into fermentable xylose with more than 90% conversion.ConclusionsProperties of the WSUCF1 β-xylosidase i.e. high tolerance to elevated temperatures, high specific activity, conversion of xylo-oligomers to xylose, and resistance to inhibition from xylose, make this enzyme potentially suitable for various biotechnological applications.

Highlights

  • Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and β-xylosidase. β-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose

  • We report the cloning and characterization of GH39 thermostable β-xylosidase from Geobacillus sp. strain WSUCF1

  • Thermostable β-xylosidases produced from thermophiles are of importance due to their prolonged activity during the hydrolysis which may allow a reduced dose of enzyme and cost-efficient conversion [17]

Read more

Summary

Introduction

Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and β-xylosidase. β-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and β-xylosidase. Thermostable β-xylosidases have been a focus of attention as industrially important enzymes due to their long shelf life and role in the relief of end-product inhibition of xylanases caused by xylo-oligosaccharides. Kumar and Wyman [4] reported increased efficiency of cellulases on lignocellulosic biomass after addition of endo-xylanase and β-xylosidase. Β-xylosidase degrades xylose oligomers before or during enzymatic hydrolysis of lignocellulosic biomass to reduce inhibition on cellulases by xylose oligomers. Xylose could accumulate to levels that strongly inhibit performance of the catalyst To overcome this limitation, a xylose-tolerant xylosidase is desirable which can resist high concentrations of the xylose [5,6].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call