Abstract

With the development of electronic equipment, heat problem and electromagnetic pollution severely affect both their functions and human health, which leads to great interests in developing materials synchronously with outstanding thermal conductivity and electromagnetic interference (EMI) shielding performance. Here, ultrathin Ti3C2Tx/h-BN two-dimensional (2D) heterostructure films were prepared via coulombic assembly between Ti3C2Tx MXene and h-BN nanosheet through ultrasonic blending. After the addition of h-BN nanosheet as thermal conductive nanofillers, the hybrid films achieved a higher value of thermal conductivity, compared to Ti3C2Tx composite film without h-BN. The higher thermal conductivity offered by h-BN enables the Ti3C2Tx/h-BN films have good potential for EMI shielding applications on wearable and portable electronic devices. When the mass ratio of Ti3C2Tx/h-BN is 7:3, the hybrid film with the thickness of 47.60 µm exhibited electrical conductivity of 57.67 S/cm and the maximum EMI shielding effectiveness of 37.29 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.