Abstract

Thermal interface materials (TIMs) are of ever-rising importance with the development of modern microelectronic devices. However, traditional TIMs exhibit low thermal conductivity even at high loading fractions. The use of high-aspect-ratio material is beneficial to achieve low percolation threshold for nanocomposites. In this work, single crystalline copper nanowires with large aspect ratio were used as filling materials for the first time. A thermal conductivity of 2.46 W/mK was obtained at an ultralow loading fraction, ∼0.9 vol %, which was enhanced by 1350% compared with plain matrix. Such an excellent performance makes copper nanowires attractive fillers for high-performance TIMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.