Abstract

Platinum (Pt) catalysts play a key role in energy conversion and storage processes, but the realization of further performance enhancement remains challenging. Herein, we report a new class of Pt superstructures (SSs) with surface distortion engineering by electrochemical leaching of PtTex SSs that can largely boost the oxygen reduction reaction (ORR), the methanol oxidation reaction (MOR), and the hydrogen evolution reaction (HER). In particular, the high-distortion (H)-Pt SSs achieve a mass activity of 2.24 A mg-1 at 0.90 VRHE for the ORR and 2.89 A mg-1 for the MOR as well as a low overpotential of 25.3 mV at 10 mA cm-2 for the HER. Moreover, the distorted surface features of Pt SSs can be preserved by mitigating the detrimental effects of agglomeration/degradation during long-time electrocatalysis. A multiscale modeling demonstrates that surface compressions, defects, and nanopores act in synergy for the enhanced ORR performance. This work highlights the advances of stable superstructure and distortion engineering for realizing high-performance Pt nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.