Abstract

In recent years, soft continuum robots have become emerging research hotspots, but sensing of the robot shape needs to be addressed for precise control. To solve this problem, we present an optical coiled polymer sensor that can measure strain based on macro bending power loss. Proposed sensor is fabricated by coiling and annealing a polymer optical fiber of diameter 0.25 mm. Under applied strain, the bending curvature of the coiled sensor changes which leads to light intensity change. Due to its coiled design, the proposed sensor is highly stretchable and can measure both tensile and compressive strain of the coiled sensor structure in a wide range (>250%). Static and dynamic responses of the proposed sensor were observed by controlling the design parameters, such as spring diameter and number of coils. Fabricated coiled polymer sensor with a light-weight (<0.5 g) and compact structure showed a high stretchability-compressibility, high stability, and low hysteresis error. By placing three fabricated sensors inside the soft continuum manipulator, a 3-degree-of-freedom (DOF) configuration including bending and torsion motions can be obtained. We used an artificial neural network to derive the relationship between the sensor outputs and the 3 DOFs configuration of the soft continuum manipulator. The results showed that the configuration of the soft continuum manipulator can be obtained in real-time with high accuracy (error < 2.17%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.